Geometric analysis of nonlinear differential-algebraic equations via nonlinear control theory
نویسندگان
چکیده
For nonlinear differential-algebraic equations (DAEs), we define two kinds of equivalences, namely, the external and internal equivalence. Roughly speaking, word “external” means that consider a DAE (locally) everywhere “internal” on its maximal invariant submanifold (i.e., where solutions exist) only. First, revise geometric reduction method in DAEs solution theory formulate an implementable algorithm to realize method. Then procedure called explicitation with driving variables is proposed connect control systems show system can be reduced under some involutivity conditions. Finally, due explicitation, use notions from derive generalizations Weierstrass form.
منابع مشابه
Solving nonlinear space-time fractional differential equations via ansatz method
In this paper, the fractional partial differential equations are defined by modified Riemann-Liouville fractional derivative. With the help of fractional derivative and fractional complex transform, these equations can be converted into the nonlinear ordinary differential equations. By using solitay wave ansatz method, we find exact analytical solutions of the space-time fractional Zakharov Kuz...
متن کاملModel Reduction of Nonlinear Differential-algebraic Equations
∗ Division of Automatic Control Department of Electrical Engineering, Linköpings universitet, SE-581 83 Linköping, Sweden ∗∗ Department of Mechanical Science and Engineering, Nagoya University, Japan Abstract: In this work, a computational method to compute balanced realizations for nonlinear differential-algebraic equation systems is derived. The work is a generalization of an earlier work for...
متن کاملABS methods for nonlinear systems of algebraic equations
Abstract This paper gives a survey of the theory and practice of nonlinear ABS methods including various types of generalizations and computer testing. We also show three applications to special problems, two of which are new.
متن کاملglobal results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Constuction of solitary solutions for nonlinear differential-difference equations via Adomain decomposition method
Here, Adomian decomposition method has been used for finding approximateand numerical solutions of nonlinear differential difference equations arising inmathematical physics. Two models of special interest in physics, namely, theHybrid nonlinear differential difference equation and Relativistic Toda couplednonlinear differential-difference equation are chosen to illustrate the validity andthe g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2022
ISSN: ['1090-2732', '0022-0396']
DOI: https://doi.org/10.1016/j.jde.2022.01.008